Comparison of Extremum-Seeking Control Techniques for Maximum Power Point Tracking in Photovoltaic Systems

نویسندگان

  • Her-Terng Yau
  • Chen-Han Wu
چکیده

Due to Japan’s recent nuclear crisis and petroleum price hikes, the search for renewable energy sources has become an issue of immediate concern. A promising candidate attracting much global attention is solar energy, as it is green and also inexhaustible. A maximum power point tracking (MPPT) controller is employed in such a way that the output power provided by a photovoltaic (PV) system is boosted to its maximum level. However, in the context of abrupt changes in irradiance, conventional MPPT controller approaches suffer from insufficient robustness against ambient variation, inferior transient response and a loss of output power as a consequence of the long duration required of tracking procedures. Accordingly, in this work the maximum power point tracking is carried out successfully using a sliding mode extremum-seeking control (SMESC) method, and the tracking performances of three controllers are compared by simulations, that is, an extremum-seeking controller, a sinusoidal extremum-seeking controller and a sliding mode extremum-seeking controller. Being able to track the maximum power point promptly in the case of an abrupt change in irradiance, the SMESC approach is proven by simulations to be superior in terms of system dynamic and steady state responses, and an excellent robustness along with system stability is demonstrated as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Maximum Power Point Tracking in Solar Array Systems Using Fuzzy Controllers

In recent year's renewable energy sources have become a useful alternative for the power generation. The power of photovoltaic is nonlinear function of its voltage and current. It is necessary to maintain the operation point of photovoltaic in order to get the maximum power point (MPP) in various solar intensity. Fuzzy logic controller has advantage in handling non-linear system. Maximum power ...

متن کامل

Maximum Power Point Tracker for Photovoltaic Systems Based on Moth-Flame Optimization Considering Partial Shading Conditions

The performance of photovoltaic (PV) systems is highly dependent on environmental conditions. Due to probable changes in environmental conditions, the real-time control of PV systems is essential for exploiting their maximum possible power. This paper proposes a new method to track the maximum power point of PV systems using the moth-flame optimization algorithm. In this method, the PV DC-DC co...

متن کامل

General Overview of Maximum Power Point Tracking Methods for Photovoltaic Power Generation Systems

Maximum power point tracking controller is essential to obtain the maximum power from a solar array in the photovoltaic systems as the PV power module varies with the temperature and solar irradiation. In this paper, several methods for the MPPT of the PV systems are discussed and it can to be used as a Helpful reference for the upcoming MPPT user in the PV applications.

متن کامل

Maximum Power Point Tracking of the Photovoltaic System Based on Adaptive Fuzzy-Neural Method

The aim of this paper was to present an optimized method in order to use maximum capacity of the photovoltaic panels. In this regard, we presented a method for the maximum power point tracking in the photovoltaic systems by using the neural networks and adaptive controller. In the proposed system, we estimated an error by using neural network. If this error is lower than the allowable systems e...

متن کامل

Increasing the Efficiency of Photovoltaic Systems by Using Maximum Power Point Tracking (MPPT)

Using Photovoltaic systems is gradually expanded by increasing energy demand. Abundance and availability of this energy, has turned to one of the most important sources of renewable energy. Unfortunately, photovoltaic systems have two big problems: first, those have very low energy conversion efficiency (in act between 12 and 42 percent under certain circumstances). Second, the power produced b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011